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In order to harness diffractive neural networks (DNNs) for tasks that better align with real-world computer vision
requirements, the incorporation of gray scale is essential. Currently, DNNs are not powerful enough to accom-
plish gray-scale image processing tasks due to limitations in their expressive power. In our work, we elucidate the
relationship between the improvement in the expressive power of DNNs and the increase in the number of phase
modulation layers, as well as the optimization of the Fresnel number, which can describe the diffraction process.
To demonstrate this point, we numerically trained a double-layer DNN, addressing the prerequisites for intensity-
based gray-scale image processing. Furthermore, we experimentally constructed this double-layer DNN based on
digital micromirror devices and spatial light modulators, achieving eight-level intensity-based gray-scale image
classification for the MNIST and Fashion-MNIST data sets. This optical system achieved the maximum accuracies
of 95.10% and 80.61%, respectively. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.513845

1. INTRODUCTION

As the revolution of deep learning is ongoing, it also revitalizes
the field of computer vision (CV) [1]. CV is a field that bestows
upon machines the ability to perceive and interpret the visual
world, typically represented in gray scale, in the way humans do
[2]. Some CV applications have become deeply integrated into
our lives, including image classification [3,4], image segmenta-
tion [5,6], and target detection [7–11]. Algorithms for image
processing require significant parallel computational resources
[4,12–15]. Recently, to address the high parallelism and large-
scale computational demands, optical neural networks (ONNs)
have emerged [16–41]. An all-optical ONN framework,
known as diffractive deep neural network (D2NN), was intro-
duced to leverage optical diffraction for computational opera-
tions with the potential of hundreds of billions of artificial
neuron connections [23]. Its capabilities are also extended to
encompass optical logical operations and image-processing
tasks [38,42–46].

D2NNs perform all-optical computations using free-space
diffraction and optical parameter modulation. InD2NNs, each

diffractive neuron within the hidden layers modulates the
phase/amplitude of the incoming light. The modulations be-
tween successive layers are connected by optical diffraction.
The values of neurons are optimized via the error backpropa-
gation algorithm. The passive hidden layers can be fabricated
and assembled into the physical architecture of a DNN
[23,43,47–49]. Alternatively, a DNN can also be realized by
loading the phase values of neurons in the hidden layers onto
a spatial light modulator (SLM) [50].

So far, there have been few studies that can achieve the clas-
sification capability for gray-scale images in terms of light in-
tensity. Ozcan et al. encoded gray-scale information into the
phase channel of light, achieving a numerical accuracy
81.13% on the Fashion-MNIST data set [23]. In general, gray
scale serves as the initial step in CV for recognizing and com-
prehending the world. In order to emulate the operation of the
human visual system within DNNs and to extend their appli-
cability to a broader spectrum of practical CV scenarios, achiev-
ing enhanced complexity in DNNs and accomplishing their
gray-scale processing capabilities are of paramount importance.

Research Article Vol. 12, No. 6 / June 2024 / Photonics Research 1159

2327-9125/24/061159-08 Journal © 2024 Chinese Laser Press

https://orcid.org/0000-0001-8458-3941
https://orcid.org/0000-0001-8458-3941
https://orcid.org/0000-0001-8458-3941
mailto:wliubh@connect.ust.hk
mailto:wliubh@connect.ust.hk
mailto:wliubh@connect.ust.hk
mailto:lshi@fudan.edu.cn
mailto:lshi@fudan.edu.cn
mailto:lshi@fudan.edu.cn
mailto:jzi@fudan.edu.cn
mailto:jzi@fudan.edu.cn
mailto:jzi@fudan.edu.cn
https://doi.org/10.1364/PRJ.513845
https://crossmark.crossref.org/dialog/?doi=10.1364/PRJ.513845&amp;domain=pdf&amp;date_stamp=2024-05-28


In CV, the difficulty of image-processing tasks is to some
extent proportional to the amount of information contained
within the image itself. Two-dimensional (2D) image entropy
is a metric used to quantify the amount of information or un-
certainty present in an image, and it also provides a measure of
the image’s complexity, randomness, or disorder. In Fig. 1, the
2D image entropy distribution of all training samples in the
binarized/gray-scale MNIST and Fashion-MNIST data sets
is shown. Excluding the influence of image noise, the mean
of 2D image entropy of samples in the Fashion-MNIST data
set is 6.58, which is higher than that of the gray-scale MNIST
data set, which is 3.34. The average 2D image entropy of the
binarized MNIST data set is minimal, measuring only 1.65.
This result suggests that the samples in the Fashion-MNIST
data set contain more information compared to those in the
MNIST data set. Binarizing image samples leads to a loss of
the original information contained in the gray-scale images, re-
sulting in a decrease in their 2D image entropy. As is shown in
the benchmark table in Fig. 1, there is a prominent difference
in the image classification accuracy between the two data sets,
with the accuracy being inversely proportional to the amount of
image information. Moreover, due to the passive architecture
design of DNNs at present, it is challenging to use inten-
sity-based gray-scale images as inputs for image classification
tasks during testing.

In this work, we introduce a novel architecture for a multi-
layer DNN based on digital micromirror devices (DMDs) and
SLMs. We have achieved the task of eight-level intensity-based
gray-scale image classification experimentally through a multi-
layer DNN at visible range. DNNs tasked with processing gray-
scale images demand a more robust expressive capacity in com-
parison to their binary image processing counterparts. In our
research, we harness the potential of a double-layer DNN that
undergoes optimization concerning the Fresnel number, which
yielded the highest accuracies with 97.90% for the intensity-
based gray-scale MNIST data set and 86.02% for the
Fashion-MNIST data set. Furthermore, our experiments mark
a pioneering achievement by attaining a testing accuracy of
95.10% for the intensity-based gray-scale MNIST data set

and 80.61% for the Fashion-MNIST data set when subjected
to the assessment of the complete 10,000 gray-scale samples in
the test set.

2. RESULTS AND DISCUSSION

A. Theoretical Analysis
A DNN constitutes a linear neural network, due to the fact that
optical diffraction and phase/intensity modulation are all linear
operations. Therefore, when vectorized, the input–output rela-
tionship of a DNN, uintput and uoutput, can be linked through a
diffraction matrix M, which can be expressed as

uoutput � jM × uinputj2, (1)

and here

M � D ×
Y1

i�L

�diag�pi� ×D�, (2)

where pi is the vectorized hidden layer, D can represent the
free-space diffraction process, and L is the number of layers.
The ability of the DNN to modulate the input light can be
illustrated by analyzing the properties of M.

The property of the diffraction matrixM plays a critical role
in determining the performance of a DNN. When the count of
phase modulation layers is zero, corresponding to a scenario
akin to free-space diffraction, the amplitude of M in Fig. 2(a)
implies that M is equal to D, according to Eq. (2). In this con-
text, optical diffraction alone does not have the capacity to
modulate the input image. This limitation occurs because each
complex-valued element within M is identical to three other
symmetric elements along the two diagonals of the matrix.
As such, the entire matrix possesses only 1 degree of freedom
to control because the relationships between adjacent elements
are also constrained by the diffraction-related parameter, which
is the Fresnel number, defined as

F � a2

λd
, (3)

where a is the pixel size, λ is the working wavelength, and d is
the diffraction distance.
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Fig. 1. 2D image entropy distribution of all gray-scale samples in the MNIST and Fashion-MNIST data sets [51] and binarized samples in the
MNIST data set. The benchmark table showcases the performance of digital computer algorithms, which are the linear neural network (NN) and
the convolutional neural network (CNN), in the first two rows [52]. In contrast, the performance of deep [23,53,54] and single-layer DNNs
(SL-DNNs) in numerical simulations and experiments is also presented in the remaining table.
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In Fig. 2(b), with the insertion of a single-phase modulation
layer into the diffraction process, the symmetry in the ampli-
tude of M along the diagonal from the bottom-left to the top-
right is disrupted. This means the phase modulation layer pro-
vides an additional degree of freedom for light’s modulation.
Due to the constraints imposed by the remaining symmetrical
axis on the values of the matrix elements, only half of elements
in M or fewer can be used to modulate the incoming light.
Moreover, the effectiveness of this enhancement also hinges
on the Fresnel number F. A small F , less than roughly
10−5, yields nearly identical elements in M. Consequently, ir-
respective of the input image’s characteristics, the resulting light
field remains largely consistent. On the other hand, a large F ,
more than approximately 100, gives only the elements at the
diagonal line the ability to modulate the incoming light. In
such a case, light diffracted from pixels in the previous layer
cannot propagate to pixels in the subsequent layer, except at
their corresponding positions. Our previous work has shown
that with the optimal Fresnel number, a single-layer DNN
can deliver promising performance when handling a binarized
MNIST data set [50].

To enhance DNN’s expressive power for processing inten-
sity-based gray-scale images, increasing the number of DNN
phase modulation layers is an effective approach. When two
or more phase modulation layers are incorporated, the only
symmetric axis of M is broken and every element is indepen-
dent to some degree, because the correlation determined by
optical diffraction between adjacent elements still persists.
Consequently, this grants DNNs more degrees of modulation.

In fact, the arbitrary elements ofM provide almost optimal per-
formance for the DNNs. For more complex and challenging
data sets, deep DNNs typically should have better processing
capabilities. In Fig. 2(c), without optimization of the Fresnel
number, a double-layer DNN still struggles to achieve excellent
expressive power. Therefore, even as the number of layers in-
creases, we still need to adjust the diffraction-related parameters
to a reasonable range. From the rightmost and leftmost col-
umns of Fig. 2 together, it can be observed that for the same
Fresnel number, increasing the number of layers can also reduce
the correlation between elements in the matrix, thereby
enhancing their independent adjustability. Therefore, increas-
ing the number of layers in the DNN can improve its expressive
power without the range of favorable Fresnel numbers. As the
number of layers and diffractive neurons increases, the accumu-
lation of errors also proportionally complicates the preparation
of DNNs. Therefore, we consider that a double-layer DNN
optimized with a proper Fresnel number can, to a great extent,
maximize the arbitrariness of values between elements in M
while limiting the possibility of inevitable error accumulation
due to spatial complexity.

B. Experimental Design
Here, we employed a more expressive DNN consisting of two
phase modulation layers to process gray-scale images. In Fig. 3,
we introduce the architecture of a multilayer DNN based on a
DMD and two SLMs. A DMD is used to display the intensity
information of incoming light and diffract it by controlling the
tilt of each tiny mirror. The well-trained phase values can be
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Fig. 2. Properties of the diffraction matrices M for optical diffraction and DNNs. (a) Schematic view of the free-space optical diffraction. Each
element in M for optical diffraction is identical to the other three elements symmetrically positioned along the two diagonals (red dashed lines).
(b) Schematic view of a single-layer DNN. One symmetric axis of matrix elements, which is the diagonal from the bottom-left to the top-right ofM,
is disrupted. (c) Schematic view of a double-layer DNN. The last symmetric axis of matrix elements, which is the diagonal from the top-left to the
bottom-right ofM, is disrupted.M with different Fresnel numbers F have different properties. When the optimal F is properly chosen, elements in
M will be independent to take and DNN will have promising performance.
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encoded on the SLM, after its gamma correction is done. After
the incident light illuminates the SLM, its wavefront is modu-
lated. A 50:50 nonpolarized beam splitter (NPBS) reflects half
of the modulated light. The combination of an SLM and an
NPBS can be regarded as a cell of a deep DNN, whose primary
duty is to modulate the incoming light and output it to another
direction. Each DNN cell can be considered as a layer of a
DNN. Cells can be connected by using the output of the pre-
vious cell as the input of the next cell. After the output of the
last cell, light energy is received by a complementary metal-ox-
ide semiconductor (CMOS) camera. We experimentally con-
struct a double-layer DNN based on this optical architecture,
which is also available for DNNs with any number of layers.

C. Simulation and Experimental Results
A double-layer DNN consists of three diffraction and two phase
modulation processes. The first diffraction is from DMD to
the SLM 1, the second diffraction is from SLM 1 to SLM 2,
and the third diffraction is from the SLM 2 to the CMOS cam-
era. In the experiments, these three distances d i �i � 1, 2, 3�
must be priorly and precisely measured. Subsequently, we got
d 1 ≈ 16.56 cm, d 2 ≈ 24.99 cm, and d 3 ≈ 15.45 cm. The
Fresnel number is approximately 6 × 10−4, falling within the rea-
sonable range. The measurement of three diffraction distances is
necessary to reconstruct the forward propagation of the DNN
model into a digital computer. The specific measurement meth-
ods are detailed in Section 3. The angular spectrum method is
used to simulate a free-space optical diffraction process, which
can be expressed as

F �ui�1� � F �ui� ∘ H �d i�, (4)

where ui and ui�1 are the complex-valued light field of layer i
and i � 1, H is the transfer function, and F �·� is the Fourier

transform. Zero padding is also needed to upscale the resolution
of the Fourier plane, allowing for a more accurate simulation of
the diffraction light-field distribution. The phase modulation
process can be simply presented by a Hadamard product be-
tween the light field and the phase delay. The optimization of
phase values is achieved using the error backpropagation algo-
rithm. After all the diffraction and phase modulation processes,
the light intensity at the output layer is used to match the ground
truths manually set for every category of the data set. Our train-
ing employs both the softmax-cross-entropy (SCE) loss and the
mean-squared error (MSE) loss as loss functions.

To demonstrate the excellent performance of the double-
layer DNN, we initially choose the gray-scale MNIST hand-
written digit data set for testing. After DNN is trained on a
training set of 60,000 samples, it achieved its highest accuracy
of 97.90% on a blind numerical test of 10,000 samples. All
samples are converted to eight-level gray scale. The confusion
matrix and energy distribution percentage of the simulation are
shown in Fig. 4(b). We loaded the trained phase values onto
two SLMs and experimentally tested a total of 10,000 test sam-
ples. In Fig. 4(a), the example testing sample of “2” is shown
and is loaded onto the DMD. During the CMOS camera’s ex-
posure time, the DMD achieves eight-level gray-scale output
through the flipping of micromirrors. The optical intensity
of the output distribution is also shown. The target region with
the maximum light intensities determines the classification re-
sult of the DNN for the input image. The positions of the se-
lected regions are chosen compatible with the ground truths
during the training process and fine-tuned based on the overall
accuracy of the test set. The confusion matrix and energy dis-
tribution percentage of the experimental result of gray-scale
MNIST handwritten digits classified by a double-layer
DNN are shown in Fig. 4(c). We achieved a blind-testing ac-
curacy of 95.10% on 10,000 samples in the test set. The de-
crease in experimental accuracy relative to simulated accuracy
can be caused by several main factors. One factor is the phase
and amplitude errors caused by the SLMs. The second factor is
the measurement error of three diffraction distances. The third
factor is the insufficient polarization purity, resulting in unex-
pected phase modulation. Nonetheless, this is still a promising
performance on the gray-scale MNIST data set based on a
DNN model.

Furthermore, we chose the Fashion-MNIST data set for
testing. Instead of handwritten digits, Fashion-MNIST consists
of a collection of gray-scale images of various fashion items and
provides a more challenging problem compared to MNIST.
We also trained a double-layer DNN of 60,000 samples in
the training set, and it achieved its highest accuracy of
86.02% on a blind testing of 10,000 samples. The confusion
matrix and energy distribution percentage of the simulation are
shown in Fig. 5(b). In Fig. 5(a), the example testing sample
of “Sandal” is shown and is loaded onto the DMD. The exper-
imental gray-scale settings of DMD remain the same as what
is set when testing the MNIST data set. The confusion matrix
and energy distribution of the experimental result of
Fashion-MNIST classified by a double-layer DNN are shown
in Fig. 5(c). We achieved a blind-testing accuracy of 80.61%
on 10,000 samples in the test set.
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Fig. 3. Schematic and photo of the architecture of the multilayer
DNN. It is a combination of a DMD, multiple DNN cells, each
of which contains a phase-only SLM and NPBS, and a camera. An
experimental setup for a double-layer DNN is shown. A linear polar-
izer, LP1, serves to adjust the polarization direction of the light to be
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HW, is placed between LP1 and DMD to increase the component of
the light with the same polarization direction as the desired direction.
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The relationship of the Fresnel number F and the perfor-
mance of a single-layer DNN has been sufficiently illustrated in
our work recently [50]. The relationship between F and the
double-layer DNN is also worthy of discussion. The process
of three-segment free-space diffraction can be described by
three Fresnel numbers: F 1, F 2, and F 3. Let F 1 � F 3; this
is done to reduce the redundancy in numerical analysis. The
diffraction between the input or output to the phase modula-
tion layer and the diffraction between the two phase modula-
tion layers are sufficient to capture the relationship between the
performance of double-layer DNN with the Fresnel numbers.
To illustrate this relationship, we conducted tests on double-
layer DNN using the Fashion-MNIST data set. In Fig. 6(b),
F 2 → ∞ is the condition of adhering two phase modulation
layers together, which is equivalent to the condition of a sin-
gle-phase modulation layer. When F 1 ranges from 10−4 to
10−2, DNN will have a decent performance. When F 2 becomes
gradually smaller, the elements independence of diffraction ma-
trix M increases (see Fig. 2), which provides the double-layer
DNN with a stronger expressive power. When F 2 continues to
get smaller, the correlation between elements of M increases
again, which leads to a decrease in accuracy. But in any case,
for the same Fresnel number, a double-layer DNN will always
outperform a one-layer DNN as long as there is a practical dif-
fraction process between the two phase modulation layers.

In summary, we theoretically analyzed the benefits of opti-
mizing Fresnel number values and increasing the number of
phase modulation layers to enhance the performance of
DNNs. Based on this conclusion, we designed and developed
an optical system using a DMD and multiple SLMs. In con-
trast to previous DNNs primarily used intensity binarization,

we achieved testing on intensity-based gray-scale MNIST and
Fashion-MNIST data sets, which contain more information.
In simulations, we achieved accuracies as high as 97.90%
and 86.02% on these two data sets. In experiments, we tested
the complete test sets and achieved accuracies of 95.10% and
80.61%, respectively.

Successfully processing gray-scale images means that DNNs
can now be applied not only to image classification tasks but
also have practical potential for more complex CV objectives
such as object recognition, saliency detection, and facial recog-
nition. Image binarization is an image-processing technique
that can be used for specific tasks, such as object detection
and text recognition. However, in more practical and wide-
spread applications, binarization leads to the loss of image de-
tails and gray-scale information. Choosing different threshold
values can also result in decreased overall performance.
Additionally, the process of image binarization requires elec-
tronic devices. So, implementing an all-optical DNN for
gray-scale image processing is also meaningful. It is still worth
discussing the performance of DNNs in processing either
binary or gray-scale images in a more complicated data set like
CIFAR-10. We believe that our work provides a theoretical and
experimental foundation for such further validation and the
application of more powerful DNNs in a broader range of
scenarios.

3. METHODS

A. Experimental System
Our experimental optical system adopted commercially avail-
able optoelectronic devices as the blocks of a double-layer
DNN. The coherent light source is generated from a
continuous-wave diode-pumped laser (04-01 Series, Fandango,
Cobolt) with a working wavelength of 515 nm. Following laser
collimation, it is incident on the DMD (HDSLM756D65,
UPOLabs) surface at an angle of 24 deg. The DMD consists
of 1920 × 1080 micromirrors with a pitch of 7.56 μm. After
encoding image information onto the DMD and reflection,
we employed a half-wave plate (ZWP20H-520Q, JCOPTIX)
and a linear polarizer (OPPF1-VIS, JCOPTIX) to modulate the
polarization of the light. Two SLMs (HDSLM80R Plus,
UPOLabs) with pixel sizes of 8 μm serve as the phase modu-
lation layers. Two NPBSs (BS013, Thorlabs) are used to adjust
directions of the reflected and transmitted light. The light in-
tensity at the output layer was recorded using a CMOS camera
(FL20BW, Tucsen).

B. Data Preprocessing
Both the MNIST and Fashion-MNIST data sets have 10 cat-
egories, with a total of 60,000 training samples and 10,000 test-
ing samples. These images have a resolution of 28 × 28 pixels.
For training and testing on the gray-scale MNIST data set, we
upscaled the resolution to 200 × 200 pixels, and for training
and testing on the Fashion-MNIST data set, we upscaled the
resolution to 300 × 300 pixels. All images were set to eight-level
intensity-based gray scale.

C. Diffraction Distance Measurement
To obtain accurate diffraction distances in experiments, using
lens imaging is a simple and effective common method. One of

U0

Double-layer DNN
U1 U2

U3U0
U11 U22

(b)

0

(a)

F1 F1F2

Fig. 6. Performance of a double-layer DNN with different Fresnel
numbers. (a) In a double-layer DNN, there is three-segment free-space
diffraction. We let the first and the last diffraction processes to be the
same, where F 1 � F 3. The second diffaction process can be described
by F 2. (b) Performance of the double-layer DNN with different com-
binations of F 1 and F 2.
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the primary functions of an SLM is to simulate the effect of a
lens in an optical system by loading the phase distribution of a
Fresnel lens. After encoding the phase distributions of Fresnel
lens with three combinations of different focal lengths into the
SLMs and recording the object plane using the CMOS camera,
three independent equations can be listed to solve three un-
known quantities: d i (i � 1, 2, 3). The three pairs of focal
lengths are (f 1, ∞), (∞, f 2), and (f 0

1, f
0
2). The focal length

approaching ∞ means phase values of the SLM are set to be a
constant value. The first two equations can be written as
1∕d 1 � 1∕�d 2 � d 3� � 1∕f 1 and 1∕�d 1 � d 2� � 1∕d 3 �
1∕f 2. The third equation can be written as 1∕�d 2 − f 0

1d 1∕
�d 1 − f 0

1�� � 1∕d 3 � 1∕f 0
2. In the experiment, we set up

these three combinations of focal lengths to be (11.75 cm,
∞), (∞, 11.27 cm), and (20.00 cm, 13.71 cm) to achieve good
imaging at the object plane. After solving the equations, we got
d 1 ≈ 16.56 cm, d 2 ≈ 24.99 cm, and d 3 ≈ 15.45 cm. Under
the circumstances of DNNs with more layers, performing im-
aging experiments with any two SLMs using the method de-
scribed above, with the phase values set to 0 for the remaining
SLMs, three distances can be obtained in the first set. Then, by
replacing the other two layers of SLMs and repeating the same
procedure, another set of distances can be obtained. After
multiple measurements, the diffraction distance for each seg-
ment can be measured. Owing to the limited resolution and
the fill factor of SLMs, there may be a slight error between
the simulated and the actual focal length when loading a lens
phase distribution on SLMs. This error may influence the mea-
surement of diffraction distances and cause the decrease in ex-
perimental accuracy.

Currently, this method requires precision in the alignment
and diffraction distance among various optical components
during practical experiments. Considerable effort is needed
for calibration before DNN’s implementation.
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